Abstract
Fiber-shaped supercapacitors are promising energy storage devices for future flexible and portable electronics. In this study, we report a fiber-shaped asymmetric supercapacitor (ASC) device made with the metal oxides having a large work function difference, directly grown on a flexible and conductive carbon fiber (CF) substrate. Specifically, carbon fiber/MnO2 (CF/MnO2) and carbon fiber/MoO3 (CF/MoO3) were fabricated using a simple electrodeposition method. The all-solid-state fiber-shaped ASC device was then assembled with CF/MnO2 as the positive electrode and CF/MoO3 as the negative electrode. The large work function difference between the metal oxides and the high conductivity of the CF substrate provided the ASC device with remarkable performance. In particular, it exhibited capacitance of 4.86 mF cm−2 and a wide operating voltage window of 2.0 V, which resulted in an excellent energy density of 2.70 μWh cm−2 and a power density of 0.53 mW cm−2. Also, it readily tolerated 3000 cycles of electrochemical testing and extreme mechanical deformation. Consequently, the outstanding performance and stability of the fiber-shaped ASC device shows great potential for future energy storage systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.