Abstract

Despite the evolution of high-speed communication network to accommodate an increasingly number of applications with diverse service requirements, there still exist a number of barriers related to the deployment of the encoded video over the ATM network. In fact, additional works have to be devoted to improve protocol architecture and to guarantee the QoS. In this paper, we first analyze the main parameters affecting the visual quality of real video pictures. Then, we define specific services to be implemented at the network interface level. We also discuss the proposed integrated protocols architecture for real time application such as video coding illustrating the function to support the challenges of managing real time services over high speed network. In fact, data cells are exposed to delays and losses, which affect the quality of the video signal. Therefore, we have to perform the adequate processing in order to keep the quality of service on an acceptable level. In this article, we propose the design of an interface between the MPEG-2 standard and the ATM network in order to improve the video visual quality. Our approach tries to overcome the difficulty imposed by traditional random cell discarding due to the bursty aspect of the traffic and the variable bit rate (VBR) transmission, nature of compressed video. The performance evaluation shows the effectiveness of the proposed interface architecture with the set of mechanisms in improving the robustness of the video delivery system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.