Abstract
Indoor air quality (IAQ) has assumed new significance given the extensive amount of time spent indoor due to the coronavirus pandemic and particulate matter (PM) pollution. Accordingly, the development of window air filters to effectively intercept PM from outdoor air under natural ventilation conditions is an important research topic. However, most existing filters inevitably suffer from the compromise among filtration capability, transparency, and air permeability. In this study, we fabricate a high-performance transparent air filter to improve IAQ via natural ventilation. polyvinylidene fluoride (PVDF) superfine nanofibers of size 20–35 nm are prepared using extremely dilute solution electrospinning; a multi-scale nanofiber structure is then designed. By adjusting the ratio of PVDF superfine nanofibers (SNs) to PVDF coarse fibers (CNs), we balance the structure–performance relationship. Benefiting from the multiscale structural features that include a small pore size (0.72 μm) and high porosity (92.22%), the resulting filters exhibit excellent performance including high interception efficiency (99.92%) for PM0.3, low air resistance (69 Pa), high transparency (∼80%) and stable filtration after 100 h of UV irradiation. This work describes a new strategy for the fabrication of nanofibers with true-nanoscale diameters and the design of high-performance air filters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.