Abstract

Semi‐transparent perovskite solar cells (ST‐PeSCs) have tremendous potential as solar windows owing to their higher efficiency and visible transmittance. However, studies toward this application are still nascent, particularly in unraveling the interplay between how the perovskite composition impacts the achievable device performance and stability. Here, the role of A‐ and X‐site modification in APbX3 perovskites is studied to understand their influence on these factors. Through detailed experimental and simulation work, it is found that a perovskite composition consisting of cesium (Cs) and formamidinium (FA) at the A‐site delivers the best device performance over a range of band gaps, which are tuned by changes to the X‐site anion. Using this optimized perovskite composition, power conversion efficiencies of 15.5% and 4.1% are achieved for ST‐PeSCs with average visible transmittance values between 20.7% and 52.4%, respectively. Furthermore, the CsFA‐based ST‐PeSCs show excellent long‐term stability under continuous illumination and heating. The stability of the precursor solutions across each of the studied compositions has also been considered, showing dramatic differences in the structural properties of the perovskites and their device performance for all mixed A‐site compositions possessing the archetypal methyl ammonium species, while also confirming the superior stability of the CsFA precursor solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.