Abstract

Perovskite solar cells (PSCs) have been in the spotlight as a promising next-generation solar cell. With the tremendous development of power conversion efficiency (PCE) over the past decades, a considerable amount of research has focused on semi-transparent perovskite solar cells for applications. However, the short-circuit current density (JSC) greatly decreases in semi-transparent PSCs with an increase in transmittance, and this results in a significant decrease in PCE. In this study, semi-transparent PSCs were fabricated by controlling the absorption layer thickness and aperture ratio using a 3D-structured FTO manufactured via processes that can work large areas (direct printing and mist-CVD). This strategy has an advantage in that the aperture ratio (transmission/entire area) can be controlled easily by adjusting pattern specification. The effect of a 3D-structured FTO enhanced the diffuse transmittance and shortened the carrier travel distance; further, it minimized the decrease in PCE because of an increase in transmittance. Our fully semi-transparent PSCs (F–PSCs) with the ITO cathode achieved a PCE of 12.0 %–14.6 %, and an average visible transmittance (AVT) of 13.4 %–17.0 %. These results demonstrate that the parameter of semi-transparent PSCs (transmittance and PCE) can be easily tailored to the application by controlling the specification of the pattern.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call