Abstract

Polyvinylidene fluoride (PVDF)‐based nanofiber was successfully produced for a high performance and stable humidity sensor via a solution‐blowing spinning method. The performances of the manufactured sensors, including the impedance change with relative humidity (RH), moisture stability, and response and recovery times, were investigated. To improve charge carrier transfer, which is the main mechanism of humidity sensing, especially under low RH conditions, lithium chloride was used and displayed the best linearity in the impedance change with RH. Fast response and recovery times of 1.7 and 16.1 s were, respectively, achieved with zinc oxide nanoparticles. Furthermore, the sensors showed excellent moisture stability, owing to the hydrophobicity of PVDF, and this was demonstrated via repeatability testing and scanning electron microscopy. The humidity sensing mechanism was discussed using complex impedance spectra. POLYM. ENG. SCI., 59:304–310, 2019. © 2018 Society of Plastics Engineers

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call