Abstract

This paper presents a new methodology for the synthesis of high performance flexible datapaths, targeting computationally intensive digital signal processing kernels of embedded applications. The proposed methodology is based on a novel coarse-grained reconfigurable/flexible architectural template, which enables the combined exploitation of the horizontal and vertical parallelism along with the operation chaining opportunities found in the application's behavioral description. Efficient synthesis techniques exploiting these architectural optimization concepts from a higher level of abstraction are presented and analyzed. Extensive experimentation showed average latency and area reductions up to 33.9% and 53.9%, respectively, and higher hardware area utilization, compared to previously published high performance coarse-grained reconfigurable datapaths.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.