Abstract

In this paper, a correlated double sampling (CDS) technique is proposed in the design of a delta sigma analog-to-digital converter (ADC). These CDS techniques are very effective for the compensation of the nonidealities in switched-capacitor (SC) circuits, such as charge injection, clock feed-through, operational amplifier (op-amp) input-referred offset and finite op-amp gain. An improved compensation scheme is proposed to attain continuous compensation of clock feed-through and offset in SC integrators. Both high-speed and low-power operation is achieved without compromising the accuracy requirement. Also this CDS delta sigma ADC is the most promising circuit for analog to digital converter because this circuit reduces noise due to drift and low frequency noise such as flicker noise and offset voltage and also boosts the gain performance of the amplifier. Further, the simulation results of this circuit are verified on using a "cadence virtuoso tool" using spectre at 45 nm technology with supply voltage 0.7 V.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.