Abstract

Here we report the fabrication and characterization of high mobility amorphous ZnMgO/single-walled carbon nanotube composite thin film transistors (TFTs) with a tunable threshold voltage. By controlling the ratio of MgO, ZnO and carbon nanotubes, high performance composite TFTs can be obtained with a field-effect mobility of up to 135 cm(2) V(-1) s(-1), a low threshold voltage of 1 V and a subthreshold swing as small as 200 mV per decade, making it a promising new solution-processed material for high performance functional circuits. A low voltage inverter is demonstrated with a functional frequency exceeding 5 kHz, which is only limited by parasitic capacitance rather than the intrinsic material speed. The overall device performance of the composite TFTs greatly surpasses not only that of the solution-processed TFTs, but also that of the conventional amorphous or polycrystalline silicon TFTs. It therefore has the potential to open up a new avenue to high-performance, solution-processed flexible electronics which could significantly impact the existing applications, and enable a whole new generation of flexible, wearable, or disposable electronics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call