Abstract

In this article, a novel hybrid plasmonic waveguide (HPWG)-based all-optical switch (AOS) using zinc-doped cadmium oxide (ZnCdO) is reported and numerically investigated with the finite-element method. This oxide layer, which is a well-known transparent conductive oxide (TCO), can be switched from a dielectric to a metallic phase by electrical tuning the refractive index. The mobility of free-carrier concentration is highly magnified with a nonlinear optical effect induced by the epsilon-near-zero material near the telecommunication wavelength. We have simulated the plasmonic switch using the COMSOL Multiphysics simulator, predicting 13.75 dB extinction ratio (ER), 0.5 dB insertion loss (IL), and 27.5 figure-of-merit (FoM) at 1.55 <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\mu \text{m}$ </tex-math></inline-formula> wavelength. We also performed the reliability study by varying parameters, such as the width and height of the waveguide, which affect the performance of the on-chip switch design. In addition, the proposed AOS can be easily integrated with future silicon photonic circuits for ultrafast switching applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.