Abstract

AbstractTransition metal‐based materials explored for energy storage applications viz. batteries, supercapacitors and more recently battery‐supercapacitor hybrids (BSHs) abundantly involve Co‐based materials. However, the supply chain issues and low electronic conductivity force us to look for alternative options. In this regard, Co‐free binary metal phosphide/phosphate consisting of Ni and V metal (NiVP/Pi) microspheres as the positive electrode of BSH which shows a high specific capacity of 502 C g−1 (1004 F g−1) at 2 mV s−1 while retaining a high specific capacity of 214 C g−1 (428 F g−1) at 12 A g−1 is reported. The high electronic conductivity of binary metal phosphide in NiVP/Pi electrode and the rich electrochemical active sites due to Ni and V metal centres results in exciting performance. More interestingly, the hybrid device is successfully developed by employing NiVP/Pi as the positive electrode and carbon nanotubes (CNTs) as the negative electrode. The hybrid device (NiVP/Pi//CNT) is able to achieve a maximum energy density of 22.17 Wh kg−1 and a power density of 5 kW kg−1 with 91.7% capacitance retention after 7500 continuous galvanostatic charge–discharge cycles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.