Abstract

The authors have fabricated 0.10- mu m gate-length CMOS devices that operate with high speed at room temperature. Electron-beam lithography was used to define 0.10- mu m polysilicon gate patterns. Surface-channel type p- and n-channel MOSFETs were fabricated using an LDD structure combined with a self-aligned TiSi/sub 2/ process. Channel doping was optimized so as to suppress punchthrough as well as to realize high transconductance and low drain junction capacitance. The fabricated 0.10- mu m CMOS devices have exhibited high transconductance as well as a well-suppressed band-to-band tunneling current, although the short-channel effect occurred somewhat. The operation of a 0.10- mu m gate-length CMOS ring oscillator has been demonstrated. The operation speed was 27.7 ps/gate for 2.5 V at room temperature, which is the fastest CMOS switching ever reported.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.