Abstract

Bi2Te3 based alloys have long been the best and most unique thermoelectric materials for power generation below 550 K. Their substitutes with abundantly available elements are highly desirable due to the scarcity of Te element. In this work the band structure calculation of the α-MgAgSb compound shows a narrow gap characteristic. Highly pure α-MgAgSb is obtained by carefully controlled processing. The samples exhibit an intrinsically low thermal conductivity due to the unique crystal structure. A high zT of ∼1.1 at 525 K is achieved in the In doped α-MgAgSb with the optimal carrier concentration of 8–9 × 1019 cm–3, comparable to that of Bi2Te3 based alloys. Considering the abundantly available constituent elements, the present results demonstrate that α-MgAgSb is a promising candidate for low-temperature (RT–550 K) power generation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.