Abstract
Abstract Many studies have reported reductions in body size and calcification rates for marine larvae exposed to ocean acidification conditions. However, the physiological mechanisms driving these effects, and mechanisms underlying body size variation in general, are poorly understood. Here, we combine transcriptome sequencing with bulked segregant analysis to assess the physiological response to acidification in larvae of the California mussel, Mytilus californianus, and to explore physiological basis of variation in larval size. We reared three families of M. californianus larvae under ambient (∼350 µatm, pHtotal 8.1) and high (∼1300 µatm, pHtotal 7.6) pCO2 conditions, then passed larvae through a mesh filter, separating each family × pCO2 treatment into fractions of larvae with large vs. small body sizes. We sequenced larval mRNA for each family × treatment × body size combination, and assembled a de novo transcriptome. We then mapped reads from each library to this assembly to identify effects of high pCO2 on gene expression, and to identify transcriptomic differences between small vs. large larvae of the same age class. Although larvae reared under elevated pCO2 were smaller, we observed no consistent effect of elevated pCO2 on gene expression. Nevertheless, 1225 transcripts, primarily related to metabolism, were differentially expressed between large vs. small larvae, regardless of CO2 treatment. We conclude that the observed reduction in larval body size under high CO2 may be driven by a direct effect of the environment on phenotype, unmediated by changes in gene expression. Because M. calfornianus has evolved in the context of seasonal upwelling, exposure to 1300 µatm, pCO2 may not produce the large stress-mediated effects on gene expression that might be expected for an organism exposed to conditions far outside those of its typical environment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.