Abstract

BackgroundTraditionally, EEG/MEG data are high-pass filtered and baseline-corrected to remove slow drifts. Minor deleterious effects of high-pass filtering in traditional time-series analysis have been well-documented, including temporal displacements. However, its effects on time-resolved multivariate pattern classification analyses (MVPA) are largely unknown. New methodTo prevent potential displacement effects, we extend an alternative method of removing slow drift noise – robust detrending – with a procedure in which we mask out all cortical events from each trial. We refer to this method as trial-masked robust detrending. ResultsIn both real and simulated EEG data of a working memory experiment, we show that both high-pass filtering and standard robust detrending create artifacts that result in the displacement of multivariate patterns into activity silent periods, particularly apparent in temporal generalization analyses, and especially in combination with baseline correction. We show that trial-masked robust detrending is free from such displacements. Comparison with existing method(s)Temporal displacement may emerge even with modest filter cut-off settings such as 0.05 Hz, and even in regular robust detrending. However, trial-masked robust detrending results in artifact-free decoding without displacements. Baseline correction may unwittingly obfuscate spurious decoding effects and displace them to the rest of the trial. ConclusionsDecoding analyses benefit from trial-masked robust detrending, without the unwanted side effects introduced by filtering or regular robust detrending. However, for sufficiently clean data sets and sufficiently strong signals, no filtering or detrending at all may work adequately. Implications for other types of data are discussed, followed by a number of recommendations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.