Abstract
Non-local extensions of the Standard Model with a non-locality scale varLambda _{NL} have the effect of smearing the pointlike vertices of the Standard Model. At energies significantly lower than varLambda _{NL} vertices appear pointlike, while beyond this scale all beta functions vanish and all couplings approach a fixed point leading to scale invariance. Non-local SM extensions are ghost free, with the non-locality scale serving as an effective cutoff to radiative corrections of the Higgs mass. We argue that the data expected to be collected at the LHC phase 2 will have a sensitivity to non-local effects originating from a non-locality scale of a few TeV. Using an infinite derivative prescription, we study modifications to heavy vector-boson cross sections that can lead to an enhanced production of boosted Higgs bosons in a region of the kinematic phase space where the SM background is very small.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.