Abstract

AbstractHigh ambient temperatures intensify photochemical production of tropospheric ozone, leading to concerns that global warming may exacerbate smog episodes. This widely observed phenomenon has been termed the climate penalty factor (CPF). A variety of meteorological and photochemical processes have been suggested to explain why surface ozone increases on hot days. Here, we quantify an anthropogenic factor previously overlooked: the rise of ozone precursor emissions on hot summer days due to high electricity demand. Between 1997 and 2011, power plant emissions of NOx in the eastern U.S. increased by ~2.5–4.0%/°C, raising surface NOx concentrations by 0.10–0.25 ppb/°C. Given an ozone production efficiency (OPE) of ~8 mol/mol based on the 2011 NASA DISCOVER‐AQ campaign, at least one third of the CPF observed in the eastern U.S. can be attributed to the temperature dependence of NOx emissions. This finding suggests that controlling emissions associated with electricity generation on hot summer days can mitigate the CPF.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.