Abstract

Bionanocomposites of poly(propylene carbonate) (PPC) enhanced by cellulose nanocrytals (CNCs) are prepared via a two-step process using polyethylene glycol (PEG) as a carrier. Interfacial interaction among PPC, PEG, and CNCs, dispersion of CNCs in bionanocomposites, thermal properties, mechanical behavior, oxygen barrier property, and rheological responses are investigated. The obtained PPC/PEG/CNC nanocomposites display obvious improvement of barrier properties by adding an extremely low loading of CNCs. O2 permeability is decreased by more than 76% at CNC loading of 0.3 wt %. The Cussler model works better to predict gas barrier for nanocomposites. TEM results show that CNC is well dispersed in the matrix, and the introduction of CNC remarkably increases the tensile strength and storage modulus of PPC. Interestingly, elongation at break of the PPC/PEG/CNC nanocomposite remains above 580%. Moreover, the inclusion of CNCs increases the thermal stability and initial decomposition temperature (T–5%) of nano...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.