Abstract
Atomically thin Bi2O2Se has emerged as a novel two-dimensional (2D) material with an ultrabroadband nonlinear optical response, high carrier mobility and excellent air stability, showing great potential for the realization of optical modulators. Here, we demonstrate a femtosecond solid-state laser at 1.0 µm with Bi2O2Se nanoplates as a saturable absorber (SA). Upon further defect regulation in 2D Bi2O2Se, the average power of the mode-locked laser is improved from 421 mW to 665 mW, while the pulse width is decreased from 587 fs to 266 fs. Moderate Ar+ plasma treatments are employed to precisely regulate the O and Se defect states in Bi2O2Se nanoplates. Nondegenerate pump-probe measurements show that defect engineering effectively accelerates the trapping rate and defect-assisted Auger recombination rate of photocarriers. The saturation intensity is improved from 3.6 ± 0.2 to 12.8 ± 0.6 MW cm−2 after the optimized defect regulation. The enhanced saturable absorption and ultrafast carrier lifetime endow the high-performance mode-locked laser with both large output power and short pulse duration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.