Abstract

A number of martian outflow channels were carved by discharges from large dilational fault zones. These channels were sourced by groundwater, not surface water, and when observed on high-standing plateaus they provide indicators of elevated paleo-groundwater levels. We identify three outflow channels of Hesperian age that issued from a 750-km-long fault zone extending from Candor Chasma to Ganges Chasma. Two of these channels, Allegheny Vallis and Walla Walla Vallis, have sources >2500 m above the topographic datum, too high to be explained by discharge from a global aquifer that was recharged solely in the south polar region. The indicated groundwater levels likely required regional sources of recharge at low latitudes. The floodwaters that erupted from Ophir Cavus to form Allegheny Vallis encountered two ridges that restricted the flow, forming temporary lakes. The flow probably breached or overtopped these obstructions quickly, catastrophically draining the lakes and carving several scablands. After the last obstacle had been breached, a single main channel formed that captured all subsequent flow. We performed hydrologic analyses of this intermediate phase of the flooding, prior to incision of the channel to its present depth. Using floodwater depths of 30–60 m, we calculated flow velocities of 6–15 m s −1 and discharges in the range of 0.7 – 3 × 10 6 m 3 s −1 . Locally higher flow velocities and discharges likely occurred when the transient lakes were drained. Variable erosion at the channel and scabland crossing of MOLA pass 10644 suggests that the upper 25–30 m may consist of poorly consolidated surface materials underlain by more cohesive bedrock. We infer that an ice-covered lake with a surface elevation >2500 m probably existed in eastern Candor Chasma because this canyon is intersected by the Ophir Catenae fault system from which Allegheny Vallis and Walla Walla Vallis originated. We introduce a new hydrology concept for Mars in which the groundwater system was augmented by recharge from canyon lakes that were formed when water was released by catastrophic melting of former ice sheets in Tharsis by effusions of flood basalts. This model could help to reconcile the expected presence of a thick cryosphere during the Hesperian with the abundant evidence for groundwater as a source for some of the circum-Chryse outflow channels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.