Abstract

Surface properties of Ti implants (especially surface hydrophilicity) influence biological responses at the interface between the bone tissue and the implant. However, only a little research reported the effect of surface hydrophilicity on osteoconductivity by in vivo test. We have investigated the surface characteristics and osteoconductivity of titanium implant produced by hydrothermal treatment using distilled water at temperature of 180°C for 3 h, and compared with as-polished and those of implants produced by anodizing in 0.1 M H2SO4 with applied voltage from 0 V to 100 V at 0.1 Vsˉ1 and anodizing followed by hydrothermal treatment. The relationship between hydrophilic surface and osteoconductivity in various surface modifications was examined by in vivo test. In order to maintain the hydrophilicity of the hydrothermal sample surface, it was kept in to the phosphate buffered saline solution (PBS) with 5 times concentration: 5PBS(-) in room temperature. The surface characteristics were evaluated by scanning electron microscopy, XRD, X-ray photoelectron spectroscopy, surface roughness and contact angle measurement using a 2 μL droplet of distilled water. In in vivo testing, the rod samples (Φ2 × 5 mm) were implanted in male rat’s tibiae for 14 days and the bone-implant contact ratio, RB-I, was used to evaluate the osteoconductivity in the cortical and cancellous bone parts, respectively. As a result, hydrothermal treatment without anodizing still produced a smooth surface like an initial surface roughness of as-polished samples, Ra/μm B-I = 50% in cortical bone part (about four times higher than as-polished Ti) were provided by only hydrothermal process without anodizing after immersing into 5PBS(-).

Highlights

  • Nowadays, titanium (Ti) has been successful for implant applications especially in dental and orthopedic fields because of its superior properties such as good biocompatibility, good ductility, high fatigue and tensile strengths, lower allergenicity and high corrosion resistance arising from the formation of a self-healing passive oxide layer on their surface

  • We have investigated the surface characteristics and osteoconductivity of titanium implant produced by hydrothermal treatment using distilled water at temperature of 180 ̊C for 3 h, and compared with as-polished and those of implants produced by anodizing in 0.1 M H2SO4 with applied voltage from 0 V to 100 V at 0.1 Vs−1 and anodizing followed by hydrothermal treatment

  • Compared to aspolished samples (a), the sample surfaces of as-anodizing (b), as-hydrothermal (c) and as-anodized + hydrothermal (d) show a change of color become yellow as an interference color, which indicates that an oxidation was occurred during process

Read more

Summary

Introduction

Titanium (Ti) has been successful for implant applications especially in dental and orthopedic fields because of its superior properties such as good biocompatibility, good ductility, high fatigue and tensile strengths, lower allergenicity and high corrosion resistance arising from the formation of a self-healing passive oxide layer on their surface. Many studies about the long-term success rates of Ti implants have been well reported [1,2]. It cannot bond with bone directly and contribute new bone formation on its surface at the early stage after implantation due to insufficient bioactivity [3]. In many in vitro tests, the surface properties of Ti implants (topography, chemistry and wettability) influence biological responses at the interface between the bone tissue and the implant and, their osseointegration [4,5,6,7,8,9]. Some in vitro and in vivo studies have shown that modified surfaces achieved a higher early level of cell attachment than the untreated Ti surface

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.