Abstract

We utilize the second-order quadrature-based finite difference method and the high-order parametric integrating factor Runge-Kutta (pIFRK) integrators to construct efficient and accurate schemes for solving the nonlocal Allen-Cahn equation. These schemes preserve the maximum principle for any time-step, and exhibit up to fourth-order accuracy in the temporal direction. We establish a rigorous error estimate and an asymptotic compatibility analysis for the pIFRK schemes. Numerical experiments demonstrate the accuracy and structure-preserving property of the proposed schemes, verify their asymptotic compatibility, and investigate the discontinuity of the nonlocal Allen-Cahn equation under certain conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call