Abstract

In this study, we develop high-order time-accurate, efficient, and energy stable schemes for solving the conservative Swift–Hohenberg equation that can be used to describe the L2-gradient flow based phase-field crystal dynamics. By adopting a modified exponential scalar auxiliary variable approach, we first transform the original equations into an expanded system. Based on the expanded system, the first-, second-, and third-order time-accurate schemes are constructed using the backward Euler formula, second-order backward difference formula (BDF2), and third-order backward difference formula (BDF3), respectively. The energy dissipation law can be easily proved with respect to a modified energy. In each time step, the local variable is updated by solving one elliptic type equation and the non-local variables are explicitly computed. The whole algorithm is totally decoupled and easy to implement. Extensive numerical experiments in two- and three-dimensional spaces are performed to show the accuracy, energy stability, and practicability of the proposed schemes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.