Abstract

In this paper, a general procedure is given to construct explicit high-order symmetric multistep cosine methods. For these integrators, stability for stiff problems and order of consistency under hypotheses of regularity are justified. We also study when resonances can turn up for the methods suggested and give a simple technique to filter them without losing order of consistency. Particular methods of order eight and ten are explicitly constructed and their high efficiency is numerically shown when integrating Euler–Bernoulli equation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.