Abstract
This paper studies parametric resonance of coupled micromechanical oscillators under periodically varying nonlinear coupling forces. Different from most of previous related works in which the periodically varying coupling forces between adjacent oscillators are linearized, our work focuses on new physical phenomena caused by the periodically varying nonlinear coupling. Harmonic balance method (HBM) combined with Newton iteration method is employed to find steady-state periodic solutions. Similar to linearly coupled oscillators studied previously, the present model predicts superharmonic parametric resonance and the lower-order subharmonic parametric resonance. On the other hand, the present analysis shows that periodically varying nonlinear coupling considered in the present model does lead to the appearance of high-order subharmonic parametric resonance when the external excitation frequency is a multiple or nearly a multiple (≥3) of one of the natural frequencies of the oscillator system. This remarkable new phenomenon does not appear in the linearly coupled micromechanical oscillators studied previously, and makes the range of exciting resonance frequencies expanded to infinity. In addition, the effect of a linear damping on parametric resonance is studied in detail, and the conditions for the occurrence of the high-order subharmonics with a linear damping are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.