Abstract

Visible-infrared person re-identification (VI-ReID) aims to retrieve images of the same persons captured by visible (VIS) and infrared (IR) cameras. Existing VI-ReID methods ignore high-order structure information of features while being relatively difficult to learn a reasonable common feature space due to the large modality discrepancy between VIS and IR images. To address the above problems, we propose a novel high-order structure based middle-feature learning network (HOS-Net) for effective VI-ReID. Specifically, we first leverage a short- and long-range feature extraction (SLE) module to effectively exploit both short-range and long-range features. Then, we propose a high-order structure learning (HSL) module to successfully model the high-order relationship across different local features of each person image based on a whitened hypergraph network. This greatly alleviates model collapse and enhances feature representations. Finally, we develop a common feature space learning (CFL) module to learn a discriminative and reasonable common feature space based on middle features generated by aligning features from different modalities and ranges. In particular, a modality-range identity-center contrastive (MRIC) loss is proposed to reduce the distances between the VIS, IR, and middle features, smoothing the training process. Extensive experiments on the SYSU-MM01, RegDB, and LLCM datasets show that our HOS-Net achieves superior state-of-the-art performance. Our code is available at https://github.com/Jaulaucoeng/HOS-Net.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.