Abstract

Let $$\dot y$$ =f(y,t) withy(t 0)=y 0 possess a solutiony(t) fort≧t 0. Sett n=t 0+nh, n=1, 2,.... Lety 0 denote the approximate solution ofy(t n) defined by the composite multistep method with $$\dot y_n $$ =f(y n ,t n ) andN=1, 2,.... It is conjectured that the method is stiffly stable with orderp=l for alll≧1 and shown to be so forl=1,..., 25. The method is intrinsically efficient in thatl future approximate solution values are established simultaneously in an iterative solution process with only one function evaluation per iteration for each of thel future time points. Step and order control are easily implemented, in that the approximate solution at only one past point appears in each component multistep formula of the method and in that the local truncation error for the first component multistep formula of the method is easily evaluated as $$T^{[l]} = \frac{h}{{t_{Nl} - t_{(N - 1)l - 1} }}\{ y_{Nl}^{PRED} - y_{Nl} \} ,$$ wherey Nl PRED denotes the value att Nl of the Lagrange interpolating polynomial passing through the pointsy (N−1)l+j att (N−1)l+j withj=−1, 0,...,l − 1.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.