Abstract

Thickness mapping in aging structures suffering from corrosion is challenging especially when the structure is only partially accessible. In plates the high order shear horizontal guided wave modes all have a cutoff frequency thickness product below which they cannot propagate. This property is potentially attractive to estimate the minimum remnant thickness between two transducers. When using a source and a sensor array it is possible to control the number of modes being excited and the size of the region interrogated by the technique. Finite element simulations were used to show that by exciting multiple guided wave modes simultaneously and identifying which modes are received by a sensor array it is possible to estimate the minimum remaining thickness along the propagation path. Initial experimental results showed excellent agreement with the finite element simulations when the plate is uniform and with a thickness reduction between the source and the sensor arrays the minimum remnant thickness was underestimated by approximately 20%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call