Abstract

A novel numerical approach to solving the shallow-water equations on the sphere using high-order numerical discretizations in both space and time is proposed. A space-time tensor formalism is used to express the equations of motion covariantly and to describe the geometry of the rotated cubed-sphere grid. The spatial discretization is done with the direct flux reconstruction method, which is an alternative formulation to the discontinuous Galerkin approach. The equations of motion are solved in differential form and the resulting discretization is free from quadrature rules. It is well known that the time step of traditional explicit methods is limited by the phase velocity of the fastest waves. Exponential integration is employed to enable integrations with significantly larger time step sizes and improve the efficiency of the overall time integration. New multistep-type exponential propagation iterative methods of orders 4, 5 and 6 are constructed and applied to integrate the shallow-water equations in time. These new schemes enable time integration with high-order accuracy but without significant increases in computational time compared to low-order methods. The exponential matrix functions-vector products used in the exponential schemes are approximated using the complex-step approximation of the Jacobian in the Krylov-based KIOPS (Krylov with incomplete orthogonalization procedure solver) algorithm. Performance of the new numerical methods is evaluated using a set of standard benchmark tests.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.