Abstract
The present paper deals with a new improvement of hierarchical multi-dimensional limiting process for resolving the subcell distribution of high-order methods on two-dimensional mixed meshes. From previous studies, the multi-dimensional limiting process (MLP) was hierarchically extended to the discontinuous Galerkin (DG) method and the flux reconstruction/correction procedure via reconstruction (FR/CPR) method on simplex meshes. It was reported that the hierarchical MLP (hMLP) shows several remarkable characteristics such as the preservation of the formal order-of-accuracy in smooth region and a sharp capturing of discontinuities in an efficient and accurate manner. At the same time, it was also surfaced that such characteristics are valid only on simplex meshes, and numerical Gibbs–Wilbraham oscillations are concealed in subcell distribution in the form of high-order polynomial modes. Subcell Gibbs–Wilbraham oscillations become potentially unstable near discontinuities and adversely affect numerical solutions in the sense of cell-averaged solutions as well as subcell distributions. In order to overcome the two issues, the behavior of the hMLP on mixed meshes is mathematically examined, and the simplex-decomposed P1-projected MLP condition and smooth extrema detector are derived. Secondly, a troubled-boundary detector is designed by analyzing the behavior of computed solutions across boundary-edges. Finally, hMLP_BD is proposed by combining the simplex-decomposed P1-projected MLP condition and smooth extrema detector with the troubled-boundary detector. Through extensive numerical tests, it is confirmed that the hMLP_BD scheme successfully eliminates subcell oscillations and provides reliable subcell distributions on two-dimensional triangular grids as well as mixed grids, while preserving the expected order-of-accuracy in smooth region.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.