Abstract

We investigate the high-order harmonic generation (HHG) in a semiconductor quantum dot (SQD) and metallic nanorod (MNR) complex driven by a moderate intensity (<10(12) W/cm(2)) frequency-chirped Gaussian few-cycle pulse. Our numerical results indicate that the cutoff energy of the HHG can be controlled by optimizing the shape of the MNR and surface-to-surface distance between the SQD and the MNR. We also show that the extreme ultraviolet supercontinuum harmonics (25 eV maximal photon energy) and isolated ultrashort pulses (2.67-4.36 fs FWHM) are achievable.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call