Abstract
We investigate the generation of high-order harmonics using laser pulse energies in the few-μJ range at high repetition rates. We analyse how the conversion efficiency is influenced by the tight focusing geometry required for the generation of high-order harmonics under these conditions. A generalized phase-matching model allows us to discuss macroscopic phase effects independent of focal length. We present experimental results using the example of a 100 kHz laser system to generate harmonics up to the 27th order in Ar with a photon flux up to 3 × 109 photons s−1 into one harmonic order. High-repetition-rate femtosecond or even attosecond light sources open new possibilities for a broad range of applications such as time-resolved photoelectron spectroscopy and microscopy in the extreme ultraviolet regime.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Physics B: Atomic, Molecular and Optical Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.