Abstract

Based on the Hamiltonian formulation of water waves, using Hamiltonian consistent modelling methods, we derive higher order Hamiltonian equations by Taylor expansions of the potential and the vertical velocity around the still water level. The polynomial expansion in wave height is mixed with pseudo-differential operators that preserve the exact dispersion relation. The consistent approximate equations have inherited the Hamiltonian structure and give exact conservation of the approximate energy. In order to deal with breaking waves, we extend the eddy-viscosity model of Kennedy et al. (2000) to be applicable for fully dispersive equations. As breaking trigger mechanism we use a kinematic criterion based on the quotient of horizontal fluid velocity at the crest and the crest speed. The performance is illustrated by comparing simulations with experimental data for an irregular breaking wave with a peak period of 12s above deep water and for a bathymetry induced periodic wave plunging breaker over a trapezoidal bar. The comparisons show that the higher order models perform quite well; the extension with the breaking wave mechanism improves the simulations significantly.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.