Abstract

Two types of high-order fully actuated (HOFA) system models subject to external disturbances are firstly introduced. For the type of HOFA systems with deterministic disturbances, the problem of disturbance attenuation via state feedback is treated. While for the type of HOFA systems with dynamical disturbances, the problem of asymptotic disturbance decoupling via output feedback is considered. Utilising the full-actuation feature of the HOFA systems, disturbance attenuation and decoupling controllers for the corresponding systems are conveniently designed such that constant linear closed-loop systems with designed disturbance rejection properties are resulted in. Parametric designs for both controllers are provided, and disturbance attenuation is achieved by establishing a parametric form of the closed-loop transfer function from the disturbance to the output, while the parametric form of the disturbance decoupling controller is derived based on a complete parametric solution to a type of generalised Sylvester equations (GSEs). As a consequence of the parameter approaches, additional performance requirements on the closed-loop systems can be also easily handled. An illustrative example demonstrates the effect of the proposed approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.