Abstract

A new high-order finite difference modal method (FDMM) is developed for analyzing diffraction gratings in conical and classical mountings. The difference scheme is constructed by enforcing the internal interface conditions in each grating layer to high-order derivatives, and it gives a high order of accuracy for computing the eigenmodes of the grating layer. Between different layers, the interface conditions are implemented using a Fourier matching scheme and a point matching scheme. Compared with the standard Fourier modal method, the high-order FDMM is more efficient since the matrices in the discretized eigenvalue problems are sparse. Numerical examples are used to illustrate the performance of the method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.