Abstract
This article deals with the numerical integration in time of nonlinear Schrödinger equations. The main application is the numerical simulation of rotating Bose--Einstein condensates. The authors perform a change of unknown so that the rotation term disappears and they obtain as a result a nonautonomous nonlinear Schrödinger equation. They consider exponential integrators such as exponential Runge--Kutta methods and Lawson methods. They provide an analysis of the order of convergence and some preservation properties of these methods in a simplified setting and they supplement their results with numerical experiments with realistic physical parameters. Moreover, they compare these methods with the classical split-step methods applied to the same problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.