Abstract

In this paper, a compact dual-mode hairpin ring resonator (HRR) with two controllable resonances is proposed to design high-order dual-band high-temperature superconducting (HTS) bandpass filters. Its noncoupled dual-mode resonant characteristics and the mechanism for inherent transmission zero (TZ) production are studied. Moreover, a general dual-path coupling scheme is introduced for high-order coupling realization and applied to the third-order and eighth-order dual-band filter design. Also, two coupling structures for the adjacent HRRs with different orientations are proposed to excite TZs between the passbands for high selectivity. Besides, dual-parallel input–output feeding structure is adopted to tune the external quality factors of the dual-mode HRR individually so that the two passband are realized easily using high-order structure. For demonstration, an eighth-order dual-band HTS filter both operating at 1.9 and 2.6 GHz for mobile communications application are designed and analyzed. Compared with the third-order one, the selectivity of the eighth-order filter has at least 4.2 times improvement and five TZs are produced for high band-edge selectivity. Finally, the eighth-order dual-band filter is fabricated on MgO substrate with YBCO thin films. Measured results agree well with the simulations and show the excellent performance with 0.12-dB minimum insertion loss and better than −75-dB rejection level up to 5 GHz. In addition, the nonlinear characteristics of the fabricated HTS filter is observed by experiment, which shows the temperature dependence of filter center frequency performance and microwave insertion loss.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call