Abstract

We describe a new spatial discretization of a continuum gyrokinetic Vlasov model in axisymmetric tokamak edge plasma geometries. The geometries are represented using a multiblock decomposition in which logically distinct blocks are smoothly mapped from rectangular computational domains and are aligned with magnetic flux surfaces to accommodate strong anisotropy induced by the magnetic field. We employ a fourth-order, finite-volume discretization in mapped coordinates to mitigate the computational expense associated with discretization on 4D phase space grids. Applied to a conservative formulation of the gyrokinetic system, a finite-volume approach expresses local conservation discretely in a natural manner involving the calculation of normal fluxes at cell faces. In the approach presented here, the normal fluxes are computed in terms of face-averaged velocity normals in such a way that (i) the divergence-free property of the gyrokinetic velocity is preserved discretely to machine precision, (ii) the configuration space normal velocities are independent of mapping metrics, and (iii) the configuration space normal velocities are computed from exact pointwise evaluation of magnetic field data except for one term. The algorithms described in this paper form the foundation of a continuum gyrokinetic edge code named COGENT, which is used here to perform a convergence study verifying the accuracy of the spatial discretization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.