Abstract

AbstractA high‐order finite‐difference approximation is proposed for numerical solution of linear or quasilinear elliptic differential equation. The approximation is defined on a square mesh stencil using nine node points and has a truncation error of order h4. Several test problems, including one modeling convection‐dominated flows, are solved using this and existing methods. The results clearly exhibit the superiority of the new approximation, in terms of both accuracy and computational efficiency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.