Abstract

AbstractA compact finite difference scheme is derived for a time fractional differential equation subject to Neumann boundary conditions. The proposed scheme is second-order accurate in time and fourth-order accurate in space. In addition, a high order alternating direction implicit (ADI) scheme is also constructed for the two-dimensional case. The stability and convergence of the schemes are analysed using their matrix forms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.