Abstract

SummaryWe propose a method to solve the acoustic wave equation on an immersed domain using the hybridizable discontinuous Galerkin method for spatial discretization and the arbitrary derivative method with local time stepping (LTS) for time integration. The method is based on a cut finite element approach of high order and uses level set functions to describe curved immersed interfaces. We study under which conditions and to what extent small time step sizes balance cut instabilities, which are present especially for high‐order spatial discretizations. This is done by analyzing eigenvalues and critical time steps for representative cuts. If small time steps cannot prevent cut instabilities, stabilization by means of cell agglomeration is applied and its effects are analyzed in combination with local time step sizes. Based on two examples with general cuts, performance gains of the LTS over the global time stepping are evaluated. We find that LTS combined with cell agglomeration is most robust and efficient.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call