Abstract

We explore the consequences of introducing higher-order interactions in a geometric complex network of Morris-Lecar neurons. We focus on the regime where traveling synchronization waves are observed from a first-neighbors-based coupling to evaluate the changes induced when higher-order dynamical interactions are included. We observe that the traveling-wave phenomenon gets enhanced by these interactions, allowing the activity to travel further in the system without generating pathological full synchronization states. This scheme could be a step toward a simple phenomenological modelization of neuroglial networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call