Abstract

The paper describes methods and fast computational algorithm for building effective Hamiltonians in molecular physics using perturbative approach. Separations of fast and slow variables are considered in the framework of contact transformations (CT). The particular focus is on a systematic derivation of effective models for rovibrational spectroscopy from ab initio-based potential energy surfaces with an exhaustive review of previous studies in this field. We consider applications to several types of polyads coupled by Fermi, Coriolis, Darling-Dennison and other types of resonance interactions with examples for asymmetric top, symmetric top and spherical top molecules. A flexible choice of the modelling operator accounts for strong couplings of various types of nuclear motion in molecules among closely lying levels including vibrational resonance schemes (2:1:2 . ), (2:1:2:1), (4:2:6:3), (3:2:1:2:1:1), etc. that occur for C2v, C3v and Td molecules and their isotopic species. The method is implemented in the MOL_CT programme suite, which offers a complementary tool to variational methods in terms of convergence and computational time. The range of applications is also different. The goal of the CT method is providing mathematical models for analyses of molecular spectra with the high-resolution accuracy using physically meaningful parameters derived from ab initio functions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.