Abstract
In this paper, we present a conservative semi-Lagrangian finite-difference scheme for the BGK model. Classical semi-Lagrangian finite difference schemes, coupled with an L-stable treatment of the collision term, allow large time steps, for all the range of Knudsen number. Unfortunately, however, such schemes are not conservative. There are two main sources of lack of conservation. First, when using classical continuous Maxwellian, conservation error is negligible only if velocity space is resolved with sufficiently large number of grid points. However, for a small number of grids in velocity space such error is not negligible, because the parameters of the Maxwellian do not coincide with the discrete moments. Secondly, the non-linear reconstruction used to prevent oscillations destroys the translation invariance which is at the basis of the conservation properties of the scheme. As a consequence the schemes show a wrong shock speed in the limit of small Knudsen number. To treat the first problem and ensure machine precision conservation of mass, momentum and energy with a relatively small number of velocity grid points, we replace the continuous Maxwellian with the discrete Maxwellian introduced by Mieussens. The second problem is treated by implementing a conservative correction procedure based on the flux difference form. In this way we can construct a conservative semi-Lagrangian scheme which is Asymptotic Preserving (AP) for the underlying Euler limit, as the Knudsen number vanishes. The effectiveness of the proposed scheme is demonstrated by extensive numerical tests.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.