Abstract
This letter devotes to the design of efficient prediction–correction numerical methods which produce high-order approximations of the solutions while preserving mass, or energy, or both of them, for the semiclassical Schrödinger equation with small Planck constant ɛ. The prediction step involves an explicit temporal fourth-order exponential Runge–Kutta method which allows the ɛ-oscillatory solution to be captured efficiently. The correction step only requires solving algebraic nonlinear equations. Numerical results show that the present methods have good meshing strategies τ=O(ɛ) and h=O(ɛ) and excellent power in the simulation of Bose–Einstein condensation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.