Abstract

AbstractIn this article, we introduce a high‐order accurate method for solving one‐space dimensional linear hyperbolic equation. We apply a compact finite difference approximation of fourth order for discretizing spatial derivative of linear hyperbolic equation and collocation method for the time component. The main property of this method additional to its high‐order accuracy due to the fourth order discretization of spatial derivative, is its unconditionally stability. In this technique the solution is approximated by a polynomial at each grid point that its coefficients are determined by solving a linear system of equations. Numerical results show that the compact finite difference approximation of fourth order and collocation method produce a very efficient method for solving the one‐space‐dimensional linear hyperbolic equation. We compare the numerical results of this paper with numerical results of (Mohanty, Appl Math Lett 17 (2004), 101–105).© 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2008

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.