Abstract

This paper is devoted to fourth order compact schemes and fast algorithms for solving stationary Stokes equations with different boundary conditions numerically. One of the main ideas is to decouple the Stokes equations into three Poisson equations for the pressure and the velocity via the pressure Poisson equation (PPE). The augmented strategy is utilized to provide numerical boundary conditions for the pressure. Different velocity boundary conditions require different interpolation strategies for the augmented methods. The augmented variable is solved by the GMRES method. A new simple and efficient preconditioning strategy has also been developed to accelerate the convergence of the GMRES iteration. Numerical examples presented in this paper confirmed the designed convergence order and the efficiency of the new methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.