Abstract
In this article, we propose a notion of high-order (zeroing) barrier functions (HOBFs) that generalizes the concept of zeroing barrier functions and guarantees set forward invariance by checking their higher order derivatives. The proposed formulation guarantees asymptotic stability of the forward invariant set, which is highly favorable for robustness with respect to model perturbations. No forward completeness assumption is needed in our setting in contrast to existing HOBF methods. For the case of controlled dynamical systems, we relax the requirement of uniform relative degree and propose a singularity-free control scheme that yields a locally Lipschitz control signal and guarantees safety. Furthermore, the proposed formulation accounts for “performance-critical” control: it guarantees that a subset of the forward invariant set will admit any existing, bounded control law while still ensuring forward invariance of the set. Finally, a nontrivial case study with rigid-body attitude dynamics and interconnected cell regions as the safe region is investigated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.