Abstract

Combining the Malliavin calculus with Fourier techniques, we develop a high-order asymptotic expansion theory for general Wiener functionals. Our method gives an expansion of the characteristic functional and of the local density of a Wiener functional up to an arbitrary order. The asymptotic expansion is distributional. Except for the non-degeneracy of the limit covariance matrix, we do not assume any condition of non-degeneracy of the Malliavin covariance like a non-degeneracy condition for temporally local characteristic functions so far assumed in the theory for mixing processes, that corresponds to the Cramér condition in the classical setting. Moreover, our method does not require the Markovian property used in the mixing approach. An application to the stochastic wave equation with space–time white noise is discusses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.