Abstract
Common approximation tools return low-order approximations in the vicinities of singularities. Most prior works solve this problem for univariate functions. In this work we introduce a method for approximating non-smooth multivariate functions of the form f=g+r+ where g,r∈CM+1(Rn) and the function r+ is defined byr+(y)={r(y),r(y)≥00,r(y)<0,∀y∈Rn. Given scattered (or uniform) data points X⊂Rn, we investigate approximation by quasi-interpolation. We design a correction term, such that the corrected approximation achieves full approximation order on the entire domain. We also show that the correction term is the solution to a Moving Least Squares (MLS) problem, and as such can both be easily computed and is smooth. Last, we prove that the suggested method includes a high-order approximation to the locations of the singularities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.